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Abstract. In this paper we give a brief account of the important role that the conventional simplex 
method of linear programming can play in global optimization, focusing on its collaboration with 
composite concave programming techniques. In particular, we demonstrate how rich and powerful the 
c-programming format is in cases where its parametric problem is a standard linear programming 
problem. 
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1. Introduction 

For over forty years the simplex method has been one of the most powerful and 
useful tools of optimization theory. Although it has been used mostly to solve 
linear programming problems, it has been extended in several ways to facilitate 
the solution of non-linear optimization problems, e.g. quadratic programming, 
convex programming and fractional programming problems. Each of these 
extensions is "classical" in the sense that it exploits convexity properties of the 
objective function which ensures that any local optimum is a global one. 
Recently,  Horst  et al. [7], Konno et al. [11], Yajima and Konno [21] and Konno 
and Kuno [10] discussed some applications of linear programming techniques in 
the solution of global optimization problems. In our discussion we continue this 
line of investigation, examining the simplex method as a global optimizer, namely 
as a method for recovering global optimal solutions to problems that may have 
more  than one local optimal solution and where, in general, there is no guarantee 
that a local optimum is a global one. Obviously, this implies that we shall use the 
simplex method in the context of problems whose objective functions are not 
pseudoconvex (assuming opt is min). The following naive example illustrates the 
sort of difficulty addressed in this paper: 

E X A M P L E  1. 

min - (x a - 4) 2 - x 2 
x 

subject to 

x~ + x  2 ~< 14;x~ + x  2~>4;x I - x  2 ~<4; - x  I + x  2 ~<4;x 1,x 2 i>0.  
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F i g .  1. G e o m e t r y  o f  E x a m p l e  1. 

Figure 1 illustrates the geometry of the problem. Observe that there are two 
local minima, namely x = (0, 4) and x = (9, 5). Only the latter is a global one. So 
if, for instance, we use the GINO System (see Liebman et al. [13]), which is based 
on the generalized reduced gradient method,  we recover the point x = (0, 4). 
Using the GUESS command to instruct GINO to use xl = 8 as an initial guess, we 
recover the global optimum, x = (9, 5). [] 

The difficulty is that in cases where the objective function is not pseudoconvex it 
is often difficult to check whether a given local optimum is a global one. 
Nevertheless, in this discussion we illustrate how c-programming [18, 20] resolves 
this difficulty for a certain class of problems. Technical details concerning the 
theoretical idiom of c-programming, its techniques, algorithms and potential 
applications can be found in the references cited in the discussion and in Section 
9. The main purpose of the discussion is to illustrate the expressive power of 
c-programming and the role that it can play in global optimization when it is used 
in conjunction with the simplex method. In other words, the paper as a whole is 
expository in nature. 

With this in mind, consider now the following class of composite linear 
programming problems: 
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P R O B L E M  P. 

r := min g(x) := @(Cx + d) (1) 
x ~ X  

where 

X : =  {x CRn: Ax = b , x ~ O )  , (2) 

R denotes the real line, A is an m by n matrix, b is an m vector, C is a k by n 
matrix, d is a k vector and q~ is a real valued function on R ~. Let  X* denote the 
set of (global) optimal solutions to Problem P. 

Observe that the solution set X C_R n has the usual form associated with 
standard linear programming problems. On the other hand, the objective function 
g is not linear. It is expressed as a composite function, q), of k linear functions 
Clx + dl, C2x + d 2 , . . . ,  Ckx + d~, where C~ denotes the i-th row of the matrix C 
and d i denotes the i-th component  of the vector d. For example, in the case of 

g(x) = (3x 1 + 6x 2 + 1)(5x I + 2x 2 + 3 ) ,  x E R  2 (3) 

we can s e t k = 2 ,  d = ( 1 , 3 ) , C = [ 3  6] and 

~ ( o , w ) = o x w ,  v, w E R ,  (4) 

whereas in the case of the function defined by 

g(x)= 3xl +6x2 + l - ( 5 x l  + 2x2 + 3) 2, x E R  2 (5) 

we can set k, d, and C as above, and define q~ as follows: 

�9 ( v , w ) = v - w  2, v , w ~ R .  (6) 

Note that in both cases the function g is not pseudoconvex with respect to x. 
The difficulty is then that a local optimum is not necessarily a global one. 

In the next section we present the parametric problem deployed by c-program- 
ming as a framework for solving Problem P, and specify the conditions imposed 
on the composite function q~ to ensure the recovery of a global optimal solution 
for Problem P. As we shall see, if k ~< 2, then the parametric simplex method can 
be used very effectively to solve Problem R For larger values of k it would be 
necessary to use other  techniques, e.g. linear multicriteria methods. 

2. c-Programming's Approach 

Before  we examine how c-programming tackles Problem P, it is instructive to 
outline c-programming's basic approach in general, namely its basic approach for 
instances where its parametric problem is not a standard linear programming 
problem. Consider then the following generalization of Problem P: 
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PROBLEM Q. 

7r* := min q(y) :-- O(u(y)) 
yEY  

(7) 

where Y is some non-empty set, q is a real valued function on Y, u is a function 
on Y with values in R k, and O is a real valued function on the set u(Y):= 
(u(y): y E Y}. We shall denote by u i the i-th component of u, thus u(y)= 
( u l ( y ) , . . . ,  uk(y)), where ui is a real valued function on Y. Let Y* denote the set 
of (global) optimal solutions to Problem Q. 

To derive the parametric problem deployed by c-programming for the solution of 
Problem Q, we linearize the composite function gt with respect to u. That is, the 
parametric problem induced by Problem Q takes the following form: 

PROBLEM Q(A). 

k 

~-(A) := min q(y; A):= Au(y):= ~ Aiui(x), A E R  k . (8) 
Y@Y i=1 

Let Y*(A) denote the set of (global) optimal solutions of Problem Q(A). 
So the idea is to obtain an optimal solution for Problem Q by solving Problem 
Q(A) for an appropriate value of A, namely we seek a vector A* CR k such that 
any optimal solution to Problem Q(A*) is also an optimal solution for Problem Q. 
Such a A is referred to as an optimal A. Let A* denote the set of optimal values of 
A. The following result spells out simple conditions under which an optimal A 
exists, and its relationship to the constructs of Problem Q. 

THEOREM 1 [18]. Assume that the composite function 0 is differentiable and 
pseudoconcave on some open convex set U C__R ~ such that u(y) ~ U for all y @ Y. 
Then, 

Y*(VO(u(y)) ) C__ Y* ,  Vy E Y* (9) 

where Vtp(u(y)) denotes the gradient of ~ with respect to u at u(y), namely 

V~(u(y)):= 0 (~ ) , . . . ,O~ :~0(~)  e=,(y), y ~ Y .  �9 (10) 

A similar result can be obtained for the case where ~ is quasiconcave by imposing 
certain restrictions on the gradient of 0 (see [9]). So if we define 

A := {V(O(u(y))): y ~ Y*}, (11) 

it follows from Theorem 1 that all the elements of A are optimal. Now, turning 
back to Problem P and viewing it as an instance of Problem Q, we can set 
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u ( x ) : = C x  + d ,  x ~ X  (12) 

and consequently the objective function of the parametric problem of c-program- 
ming has the form q(x; A) = au(x) = aCx + ad. For the purpose of optimizing this 
function with respect to x, the constant Ad can be dropped. Thus the problem 
involves optimizing the expression aCx. In short, in the context of Problem P the 
parametric problem of c-programming is: 

PROBLEM P(a). 

r(a) := min g(x; a ) :=  ~.Cx, a. E R  t' . (13) 
x ~ - X  

Let X*(a) denote the set of optimal solutions of Problem P(a). Observe that 
for every a ~ R ~, Problem P(a) is a standard linear programming problem. Thus, 
in the case of the function g specified in (3) we would have 

g(x ;~ . )=a l (3X  l+6x2)+•2(5xlq-2x2) , AER 2 (14) 

which would also be the form of the parametric function induced by the function g 
specified in (5). 

Because this parametric function is linear with respect to x, for any given value 
of the parameter A, it can be optimized by standard linear programming methods. 

And so, applying Theorem 1 in the context of Problem P, we obtain the 
following result. 

COROLLARY 1. Assume  that the composite function q) is differentiable and 
pseudoconcave on some open convex set U C_R k such that Cx + d E U for  all 

x E X .  Then, 

x*(v (cx + d)) c_x*, Vx e x *  (15) 

where 

[ 3 @ , 0 ) ~=cx+a Va~(Cx+d):=t ,5~ 7 (~) . . . .  0~, ~(~)  , x ~ X .  �9 (16) 

Note that by definition, VclJ(Cx + d) denotes the gradient of q~ with respect to u 
defined in (12) at u(x) = Cx + d. For example, in the case of (5)-(6), 

vq~(v, w) = (1, - 2 w ) ,  (17) 

thus 

VcIa(Cx + d) = (1, -2(C2x + d2) ) (18) 

= (1, -2(5x I + 2x 2 + 3)) (19) 
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= (1, - l O x  1 -- 4X 2 -- 6) . (20) 

Two interrelated questions arise naturally. First, what kind of linear c-program- 
ming problems satisfy the conditions required by Corollary 1? Second, how well 
can linear programming techniques cope with the task of recovering optimal A's 
for Problem P(A)? To address these important questions it is convenient to focus 
on the case where k = 2, which is discussed next. 

3. Two-Dimensional  Linear c-Programming Problems 

Suppose that k = 2. Then Problem P can be written as follows: 

P R O B L E M  P2. 

r := min g(x) "= eI'(Clx + dl,  C2x + d2) 
x E X  

(21) 

in which case the parametric problem of c-programming has the following form: 

r(A) := min g(x; A) '=  I~ICIX q-- 1~2C2x A E e 2 (22) 
x E X  ' " 

Ignoring momentarily the instance where A 1 = 0, upon dividing the right-hand 
side of (22) by the absolute value of A 1, we obtain the following parametric 
problem: 

P R O B L E M  P2(/3). 

r([3):=ming(x;[3):=sClx+[3Czx,  /3 E R ,  s E {1,0, - 1 }  (23) 
x E X  

= ( s C  1 "Jr- j ~ C 2 ) x  (24) 

where/3  is equal to /~2 divided by the absolute value of A a. Note that formally we 
do not regard the scalar s as a parameter,  rather it is treated merely as an 
indicator that in some instances it may be necessary to multiply C 1 by - 1  and in 
some instances by 0. The latter case corresponds to the instance where A 1 = 0. In 
particular, in cases where the first component  of the gradient of q) with respect to 
u is strictly positive, we can set s = 1. In short, for all practical purposes we can 
regard s in (23) as a nuisance constant. 

Of course, the significance of the form of the parametric problem of c- 
programming given in (23)-(24)  is that it is readily amenable to the conventional 
parametric analysis of the simplex method ([2] pp. 294-298, [6] pp. 307-309). 
This means that solving Problem P2(/3) for a range of values of /3  is not much 
more expensive than solving a single linear programming problem of the same 
size (see for example the numerical results in Konno et al. [11], Macalalag and 
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Sniedovich [14] and Konno and Kuno [10]). The algorithm suggested by the 
foregoing analysis consists of three logical steps. 

(1) First, it might be necessary to determine the interval, call it B, over which 
/3 is varied. This is usually accomplished by inspection. Alternatively, if no 
obvious lower and upper bounds can be computed for /3, one may set B = 
[ - M ,  M] where M is a sufficiently large number. In many cases the parametric 
simplex procedure itself will take care of this matter. 

(2) Using conventional parametric linear programming techniques, Problem 
P2(/3) is solved for a finite sequence of values of/3 C B, say {/3(o}. Let x(/3 (i)) 
denote the optimal solution recovered for Problem P2(/3(/)). The parametric 
analysis techniques guarantee that for any /3 @B there is some /3 (o such that 
x(/3 (g)) is an optimal solution for Problem P2(/3). 

(3) The optimal solution for Problem P2 is recovered by selecting an i* such 
that x(/3 0.)) m i n i m i z e s  g(x(fl(i))) over {x(fl(i))}. 

So the overall conclusion when k = 2 is that if the composite function 4~ is 
differentiable and pseudoconcave then Problem P can be solved efficiently by 
conventional linear programming techniques. Extensive experiments conducted 
with algorithms based on the foregoing analysis are reported on in Macalalag and 
Sniedovich [14]. 

4. Scope of Operation 

What needs to be examined are the types of composite functions that readily lend 
themselves to the two-dimensional linear c-programming format discussed above. 
For obvious reasons we shall not provide a complete list. Rather, we shall present 
three major classes of problems. 

4.1. RATIO FUNCTIONS 

As is well known, e.g. Avriel [1], Bazaraa and Shetty [3], Sniedovich [18], the 
function q~ defined by 

u 
q~(v, w) : -  vER,  wER+:={rER:r>O} (25) 

W '  

is differentiable and pseudolinear on R x R +. Thus, fractional programming 
problems fall under the format of c-programming. But linear fractional program- 
ming problems can easily be transformed into standard linear programming 
problems by means of a simple transformation of variables (see [4, 15]). For this 
reason, and in this case, the c-programming format is primarily of methodological 
and theoretical interest. 

However, the c-programming format significantly extends the scope of oper- 
ation of the conventional parametric method of fractional programming. For 
example, it encompasses objective composite functions of the form 
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~(v) 
q~(v, w) := v, w E R, w > 0 (26) 

W ' 

where q~ is a differentiable concave function, in which case q~ itself is pseudo- 
concave with (v, w). The same situation will be encountered in cases where 

v 
@(v, w) := q~(w) ' v, w ~ R ,  v > 0  (27) 

and q~ is differentiable, convex and strictly positive. For example, the function 

v 
@(v,w):  = ~ ,  v , w ~ R , w > O , v < ~ O  (28) 

surfaces quite naturally in optimization problems involving deterministic equiva- 
lents of stochastic problems associated with normally distributed random variables 
(see [19]). More  generally, c-programming can handle cases where 

~(v) 
@(v, w):= q~(w) , v ,  w ~ R  (29) 

where o- is differentiable concave and non-negative and q~ is differentiable convex 
and strictly positive. We refer the reader to Avriel ([1], pp. 154-156) for a 
detailed analysis of convexity properties of composite ratio functions. The reader 
is also reminded that in our discussion opt = rain. 

4 .2 .  M U L T I P L I C A T I V E  F U N C T I O N S  

Under  this heading we consider cases where the composite function is of the form 

q'(v, w) "= ~(v)~(w) (3o) 

where both cr and q~ are real-valued differentiable functions. Observe that ~b is 
pseudoconcave if either one of the following conditions holds ([1], p. 156): 

1. o- is nonnegative and concave and q~ is positive and concave. 
2. o- is nonpositive and convex and q~ is negative and convex. 
Thus, the c-programming format offers a substantial extension to the multip- 

licative case considered recently in Konno et al. [11]. Of course, the multiplicative 
functions and the ratio functions are essentially of the same structure, namely 
(29) can be rewritten in a product form 

1 4~(~, w):= r ~(~) (31) 

and (30) can be rewritten in a fractional from 
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@(v, w ) : -  1/ o(w) �9 (32) 

Nevertheless, for our purposes it is instructive to consider these two classes 
separately, as this allows a more direct reference to the properties of the functions 
o- and q~. 

4.3. A D D I T I V E  FUNCTIONS 

It should be noted that because a function defined as the sum of two pseudo- 
concave functions is not necessarily pseudoconcave, the composite function 

q)(v, w) := o-(v) + q~(w), v, w E R  (33) 

where both o- and q~ are pseudoconcave, is not necessarily pseudoconcave. But 
since concavity entails pseudoconcavity and furthermore concavity is preserved 
under  addition, the c-programming format will accept the additive form given in 
(33) if both or and q~ are differentiable and concave. Obviously, this covers the 
degenerate  case 

@(v, w) := v + q~(w) , v, w E R (34) 

where q~ is differentiable and concave. Observe that in this case 

V(~(v, w)) = (1, ~ ' (w)) ,  v, w E R  (35) 

where q~' denotes the derivative of q~. Therefore,  in the framework of Problem 
P2, we are interested only in h I = 1, in which case the parametric problem is of 
the form given by (23)-(24)  with s = 1. Note that in this case/3 represents the 
derivative of q~ at some point w E R. 

So in short,  considering that there are many possible choices for the functions cr 
and ~p, we conclude that the class of two-dimensional linear c-programming 
problems is rich indeed. 

5. Beyond the 2-Dimensional Case 

Needless to say, the most attractive feature of the two-dimensional case is that 
problems belonging to this class can be solve directly by conventional parametric 
analysis techniques of the simplex method. Furthermore,  this involves only a 
modera te  increase in the number of pivot operations compared to the number of 
pivot operations involved in solving a single conventional linear programming 
problem of the same size (see [10, 11, 14]). 

Naturally, the computational effort is expected to increase as k is increased. 
But this does not mean that it is impossible to handle problems where k > 2. To 
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assess the complications tha t  would normally result when k > 2 it is instructive to 
consider the case when k - -3 .  

Upon dividing the objective function of Problem P(~) by ha, assuming for 
simplicity that I~ > 0, we obtain the following problem: 

P R O B L E M  P3(10). 

r(10) := min g(x; 10) := Clx + 101Czx + 102C3x,/3 E R  2 
xcEX 

(36) 

~- (C 1 -t- 101C2 q- 102C3)x (37) 

where C~ denotes the i-th row of C. 

Our plan is to solve Problem P3(10) for a finite number of /3's, say {/3(i); 
i = 1, 2 , . . . ,  t} such that for every x E X  there is some i such that x(/3 (0) is an 
optimal solution of Problem P3(10(x)), where x(10) denotes the optimal solution 
for Problem P3(/3) and 

10(x) := , , zj := j-th component of V(q~(u(x))), 

j=  l ,2 ,3 ,  x ~ X .  (38) 

If we let 10p, and 10pl denote upper and lower bounds of/3p, respectively, and set 

B := {(101,/32) E R2:/311 <~/31 ~</31,,/32~ ~</32 ~</3z,} (39) 

then the search for an optimal/3 involves solving Problem P3(/3) parametrically 
over B. 

Obviously, the computational requirements of such a search can be much more 
demanding than those of the search associated with the one-dimensional case. But 
it should be noted that things are not as bad as they may appear. Firstly, the 
search very naturally lends itself to a divide and conquer approach, namely the 
overall search can be broken down into many independent searches each 
conducted over a small subset of B. In short, the search is amenable to parallel 
processing. 

Secondly, it should be noted that the two components of the vector/3 are not 
completely independent of one another. In effect, the search need not be 
conducted on the entire rectangle B. In other words, it is often possible to exploit 
the fact that the two components of any optimal/3 are related to each other as 
stipulated by (38). I n  the extreme case, this relationship is so close that the two 
dimensional search degenerates into a one-dimensional search. In the context of 
(36)-(37) this happens when C 2 equals C 3, in which case the parametric objective 
function would be of the form 
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g ( x ;  /31, /32) = C I X  "}- (/31 +/32)C2 x .  (40) 

So we can set A = (/31 +/32) and treat  the two-dimensional case as a one- 
dimensional  case. The following example illustrates this point. Consider the case 
where  

g(x)  = cx - e ~hx+r) - (hx - r) 2 (41) 

where  c and h are n-vectors and r is a scalar. We can then set k - - 3 ,  C a = c, 

C 2 = C  3 = h , d = ( 0 , r , - r )  and 

q ~ ( ~ ) = ~ l - e ~ 2 - ~ 3  z ,  ~ r  3 (42) 

so that 

Vq~(~) = (1, - e  e2, -2~3) ,  ~ E R  3 (43) 

and therefore  

/3(x) = ( - e  hx+r, - 2 ( h x  - r ) ) ,  x ~ X .  (44) 

Thus,  we are interested only in pairs (/31,/32) E R  2 such that/31 = -e(-132/z)+zr" 
In this case the search is a one-dimensional  one, namely the parametr ic  problem 
is of  the form 

r(A) := min g(x;  A) := cx + Ahx  A E R  (45) 
x E X  ~ " 

In short,  although formally k = 3, the search for an optimal value of A is 
conducted,  in this case, in R. 

6. Composite Linear DC Programming Problems 

Here  we consider two-dimensional additive linear c-programming problems of the 
form 

g ( x ) = q ~ ( v , w ) = ~ r ( v ) + q ~ ( w ) ,  v - - C l x  + d  1,  w = C 2 x  + d  2 (46) 

where  o- is convex ,  ~ is concave  and both are differentiable. In this case, @ is a dc 

f u n c t i o n  (8), namely it is the difference between two convex functions, o- and -q~. 
The  c-programming problem is then as follows: 

P R O B L E M  DC. 

min g(x) := q~(Cax + all, C2x + d2) := cr(Cax + all) + q~(C2x + d2) .  (47) 
x E X  
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As usual, we linearize @ with respect to o- and ~ and consider the parametric 
problem 

PROBLEM DC(A). 

min g(x; A) : =  AICIX + A 2 C 2 x  , A ~ R  2 . (48) 
xEX 

The difference between this format and the two-dimensional additive c-program- 
ming format discussed above is that here the function o- is convex rather than 
concave. This modification is reflected in the following result. 

THEOREM 2. Assume that �9 is a dc function as described above, and let x* be 
any optimal solution of  Problem DC. Then x* is also an optimal solution of  
Problem DC(A*), A* = V@(Cx* + d). �9 

Although this result can be deduced directly from the analysis in Sniedovich [17], 
it is instructive to prove it formally here. We do this in two stages, the first merely 
invokes Theorem 1 to establish that if x* is an optimal solution of Problem DC, 
then it must also be an optimal solution for 

min o-(Clx + dl) +/3"C2x (49) 
xEX 

where /3*= q~'(C2x*+ d2) and q~' denotes the derivative of q~ with respect to 
C2x + d 2. This is due to the fact that ~ is concave. Thus, 

o-(Cxx* + dl) +/3"C2x* <~ o-(ClX + dl) +/3"C2x, Vx E X .  (50) 

Now, the classical first order necessary condition for x* to be a local minimum 
point of (49) is 

(x-x*)[C,o-'(Clx*+da)+/3*C2]>-O, V x E X  (51) 

where o-' denotes the derivative of o" with respect to Cix + dl. Rearranging the 
terms in (51) yields 

ol*Clx* -}-/3"C2x* ~ ol*Clx -[-/3"C2x , Vx  G X  (52) 

where a* = o-'(C~x* + da). This implies that x* is an optimal solution of Problem 
DC(A*), where 

A* = (a*,/3*) =~Tqb(Cx* + d) : (o"(Cax* + dl),  ~'(Czx* + d2)). �9 (53) 

Observe, however, that methodologically it might be advantageous to disregard 
the fact that o- is a composite function. Namely, we can use the one dimensional 
format 
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g(x) = t(x) + ~ ( w ( x ) ) ,  w(x) = cx + d (54) 

where t is a convex function of x and q~ is a differentiable concave function of 
w(x).  In this case the parametric problem of c-programming would be of the form 

P R O B L E M  DC(A). 

min g(x; A) := t(x) + Acx ,  A E R .  (55) 
x E X  

Thus, for each value of A, the parametric problem involves minimizing a convex 
function subject to linear constraints. This means that to solve the target problem 
we have to solve a number  of "easy" convex problems. Needless to say, the 
simplex method can play a central role in such scheme, for example see the 
Frank-Wolfe  method [5, 6]. 

In summary, what emerges is that in cases where the constraints of the target dc 
problem (47) are linear, c-programming offers a straightforward solution strategy 
for the target problem. Needless to say, a similar conclusion applies to situations 
where the solution set X is defined by inequalities of the form hi(x ) <~ 0, 1 <~ i <~p, 
where the h / s  are functions satisfying the usual constraints qualification require- 
ments,  in which case the parametric problem is solved by appropriate classical 

opt imizat ion methods. 

7 .  I l l u s t r a t i v e  E x a m p l e s  

In this section, we consider a number of illustrative examples which are by design 
very small and naive. Extensive computational experiments with c-programming/ 
linear programming schemes are reported on in Macalalag and Sniedovich [14], 
where problems of up to 100 constraints in 1000 variables are considered. 

E X A M P L E  2. 

rain - 4 x  1 + x 2 + 2 ~ / 1 0 x  I + x 2 + 1 ( 5 6 )  
x 

subject to: 

X I + 3X 2 ~ 18 (57) 

3x I + x 2 ~< 14 (58) 

x 1 - x 2 ~< 2 (59) 

x 1 >10, x z >~0. (60) 

If we cast the above problem in the format of (21), we have, 
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@(v, w) = v + 2~ /w 

w h e r e  v(x) = - 4 x  I + x2, and w(x) = 10x a + x 2 + 1. The  gradient  o f  q~ is g iven by 

Vq~(v, w) = (1, ~w) (61) 

so  that the  assoc iated  parametr ic  prob lem in the format  o f  (24)  w h e r e  s = 1, and 

/3 = ~2, is 

min  ( - 4 x  I + x2) + / 3 ( 1 0 x l  + xz)  (62)  x 

subject  to  ( 5 7 ) - ( 6 0 )  
U s i n g  (61)  w e  can safely restrict the va lue  of  /3 to  the  c losed  interval  

X 
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1 0  
f \k N . ' \  i .  / ,' i 7 /" 

/ .  # ,,~ - r 
�9 . - . ' 1  ~\ -~ f / . / 

f j i 

8 ' \  : " E ( 4 ~  c(6~i" ' "  . . . . . . . . . . .  

-,, ~ o ( 5 , 8 )  ,, 
\ / 

\. . / 

. , "  B(9,5 

4 \.F(o,4) . . . . . . . . .  Feasil~ie . . . .  o n . . . /  . . . . . . .  

/ ",: 

2 i . . . . . .  : . . . . . . . . .  _ . . . . . . . .  . / / / ~ "  , . ~ x \  . . . . . . .  " . . . . . . . .  

�9 / . , \ 

/ -' " - .  -36 " \  -1 

0 2 4 6 8 10 

x 
1 

Fig. 2. Geometry of Example 2. 

Table I. Summary of parametric analysis procedure applied to Example 2 

Optimal solution to Objective value of 
parametric problem target problem 

0.000000 (4,2) -0.885123 
0.272727 (2,0) 1.165151 
0.4o000o (o,o) 2.000o00 
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B = [0,. 1]. Figure 2 shows the feasible region and some level curves of the 
objective function given in (56). 

The  results obtained using the algorithm described in Section 3 are summarized 
in Table I. 

Notice that we did not solve the parametric problem (62) for /3 = 1.000000 
because for /3>0.400000 the solution x = ( 0 , 0 )  remains optimal. The 
above procedure yields the global optimal solution x = (4, 2) with objective 
value equal to -0.885123. A more elaborate illustrative example is given in 
[14]. 

In the following examples, we demonstrate the capability of the c-programming 
approach used in conjunction with nonsimplex optimization procedures, in the 
solution of dc programming problems. 

E X A M P L E  3. 

min 9(x a - 5) 2 - 4(x 2 - 4) 2 
x 

(63) 

subject to: 

X 1 "Jr- X 2 ~ 14 (64) 

x 1 + x 2 t> 4 (65) 

- x  x + x 2 f> 4 (66) 

x I - x 2 ~< 4 (67) 

l~<x  2 ~ 8 ,  x 1 ~>0. (68) 

Hence,  in compliance with the format of (54), we have, 

t(x) = 9(x 1 - 5) 2 

~ ( w ) = - 4 w 2 1 ,  w(x) = x 2 - 4 .  

Thus, by (55), the associated c-programming parametric problem is given by 

min 9(xl - 5) 2 + ,L~ 2 (69) 
x 

subject to the same set of constraints (64)-(68).  Note that ~'(w(x)) = - 8 ( x  2 - 4) 
and thus A can be restricted to the set B = [ -32 ,  24]. 

For  any A ~ B, the parametric problem given by (69) can be solved by standard 
quadratic programming methods (e.g. Frank-Wolfe) ,  or by any one of a host 
of known constrained nonlinear programming methods (eg. reduced gradient 
methods).  Therefore ,  given these various available solution methods, the 
c-programming approach to the solution of Example 3 is straightforward, 
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Tab le  II. S u m m a r y  of  resul ts  for  E x a m p l e  3 

I te ra t ion  A Op t ima l  N u m b e r  of Objec t ive  
so lu t ion  l ine sea rches  va lue  

1 - 3 2  (5, 8) 5 - 128 
2 24 (5, 1) 7 - 7 2  
3 0 (5, 1) 1 - 7 2  

We applied the c-programming algorithm [201, pp. 370-371 using the GINO 
system with its default settings to solve the required parametric problems. The 
results are summarized in Table II. 

Note that a total of 3 iterations comprising 13 lines searches were needed to 
find the optimal solution x = (5, 8) with objective value of -128. A direct solution 
by GINO using the default settings yields the nonoptimal solution x = (5, 1). 
Figure 3 shows some level curves and the feasible region associated with Example 
3. 

EXAMPLE 4. 

X 
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8 
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2 

0 
0 

"\. "\,".,., .64 : ,.,."i /" / /  
\.,-] "\, "-, i / "  ,," i.," 

kz!x " \  " " .  " . I ` ' /  ,.*" ?/ 
. . . . . . .  i.".,.,.. ":,.~(4,8i~- . . . . . . . . . . . .  :,'. c(~,~i..,.,'.: . . . . . . . .  

. . . . . . .  i . . . . . .  ",.~ i . . . . . . . . .  i - /  . . . . . .  i . . . . . . . .  

2 4 6 8 10 

X 
1 

Fig. 3. G e o m e t r y  of  E x a m p l e  3. 
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rain (70  

subject to: 

x 1 + x e ~< 10 (71) 

- x  1 + 2x: ~< 8 (72) 

x1>~2,  x2>~3 + V~ .  (73) 

Hence ,  in compliance with the format  of (55), we have 

q~(w) = - w Z e  w 

w ( x )  = x 2  - 5 

observing that  t(x) is convex for x 1 ~> 2 and q~ is concave for w >t 2 + V2. The 
associated c-programming parametr ic  problem is then given by 

+ 

subject to (71)-(73) .  Note  that from the definition of q~ it follows that 

p ' (w(x) )  = - ( x  2 - 3)(x 2 - 5)e (x2-5~ . 

And  since (71)- (73)  entail that 3 + V2~<x 2 ~< 6, it follows that 

q~'(w(x)) E B := [-8.154845,  0.461159] 

for all feasible x. Thus, the search for optimal values of )t can be restricted to the 
interval B. The results obtained by the c-programming procedure using G I N O  to 
solve the parametr ic  problem are summarized in Table III .  

The procedure  terminated after 3 iterations applying a total of 8 line searches to 
find the optimal solution x = (4.0000, 60000) with objective value equal to 
-3 .0861.  A direct solution by G I N O  yields the nonoptimal  solution 

Table III. Summary of results for Example 4 

Iteration A Optimal Number of Objective 
solution line searches value 

1 0.461159 (3.999984, 4.414214) 4 -0.558897 
2 - 8.154845 ( 3.999984, 5.999992 ) 2 - 3.086095 
3 0 (4.000001, 6.000001) 2 -3.086169 
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(3.999723, 4.414214). All applications of GINO in this example used a tolerance 
level equal to 10 -4 . 

8. Beyond Linear Programming 

It should be noted, as illustrated above in Example 3 and Example 4, that the 
c-programming format does not require the parametric problem to be a linear 
programming problem. That is, c-programming can collaborate with optimization 
methods other than the Simplex Method. For example, Sniedovich [20] describes 
collaboration schemes between c-programming and dynamic programming. In the 
following example we illustrate a collaboration scheme between c-programming 
and nonlinear optimization methods in the solution of global optimization 
problems having nonlinear constraints. 

EXAMPLE 5. 
Here we look at the two illustrative examples studied by Horst et al. [7]. 

EXAMPLE 5A. 

min 4x~ + 2xz z - 4x~ (75) 

subject to 

2 
Xl  - -  2X 1 - -  2X 2 - -  I ~ 0  (76) 

- l ~ x l  , x 2 ~ 1 .  (77) 

The c-programming format given by (55) entails the following: 

t(x) = 4x~ + 2x~ 

r  = - 4 w  z w(x)  = x 1 

Since ~p'(w(x)) = -8x  1, we can set B = [ -8 ,  8]. The parametric problem is given 
by 

min 4x~ + 2x~ + hx 1 (78) 
x 

subject to (76)-(77). 

EXAMPLE 5B 

min(x 4 + x2 + x3) - (xl + x~ - x3) (79) 

subject to 
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(x I - X 2 -- 1 .2)  2 + x 2 ~< 4 .4  (80) 

x 1 + x 2 + x 3 ~< 6.5 (81) 

x1~>1.4, x2~>1.6, x3~>1.8. (82) 

Again, a c-programming formulation of this problem can assume the format 
given by (55) where, 

t ( x )  = x 4 + x 2 + 2x 3 - x 1 

= - w  2 w ( x )  = x 2  

Thus q ~ ' ( w ( x ) ) = - 2 x 2 ,  and consequently using (81)-(82) we can set B = 
[ -6 .6 ,  -3.2].  The parametric problem is given by 

�9 4 

mtn(x  1 + X 2 q- 2X 3 -- X l )  + AX 2 (83) 

subject to (80)-(82)�9 
The results obtained by a c-programming algorithm using GINO to solve the 

parametric problem are summarized in Table IV. Examples 5A and 5B were 
solved by applying GINO directly to the target problems�9 To comply with the 
settings used by Horst et  al.  [7], the c-programming tolerance levels based on the 
parametric objective function values were set to 0.05 and 0.01 for Example 5A 
and Example 5B, respectively�9 

In comparing the performance of the procedures, it should be noted that each 
iteration of Horst e t  al. [7]'s procedure requires solving a number of linear 
programming problems, and each iteration of the c-programming algorithm 
involves an application of GINO to a convex programming problem. 

Table IV. Results for Examples 5A and 5B 

Example 5A Example 5B 

Horst et al. [1991] 
Optimal solution (0.7197, 0.0000) (1.400, 1.8128, 1.800) 
Optimal objective value -0.9987 4.568156 
Number of iterations 34 18 

GINO 
Optimal solution (0.707105, -0.000004) (1.400000, 1.809500, 1.800000) 
Optimal objective value -1.000000 4.576800 
No. of line searches 7 4 

C-programming 
Optimal solution (0.685152, -0.000009) (1.400000, 1.809509, 1.800000) 
Optimal objective value -0.996270 4.576809 
No. of iterations 25 2 
No. of line searches 135 4 
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9. Bibliographic Notes 

In view of the expository nature of this paper we provide the following 
bibliographic guide. Details concerning the origin of c-programming can be found 
in [17]. A summary of the main results appear in [18, 20]. The general profile of 
c-programming algorithms and examples illustrating how they work can be found 
in [18-20] and [14]. The latter specializes in hybrid algorithms involving c- 
programming and linear programming techniques. 

A slightly different class of composite problems and an approximation algo- 
rithms for treating them is discussed by Katoh and Ibaraki [3]. 

Numerical experiments with the parametric simplex method in the context of 
nonlinear programming problems of the type discussed in this paper are reported 
on in Konno et al. [11], Macalalag and Sniedovich [14], Yajima and Konno [21] 
and Konno and Kuno [10]. 

10. Conclusions 

The simplex method of linear programming offers a number of possibilities for the 
solution of difficult global optimization problems. In this discussion we focused on 
collaborative schemes between the simplex method and c-programming, and 
showed that such schemes are readily available, and in fact can be easily 
implemented on available commercial optimization software such as LINDO (see 
Schrage [16]) and GINO. We believe that this is an indication that much progress 
in global optimization can be achieved by specialization, namely by focusing on 
subclasses of problems whose features make it possible to circumvent the 
difficulties posed by the general format of global optimization. So, while research 
into the possibility of formulating general purpose global optimization algorithms 
should not be discouraged, it would appear that there is much scope for progress 
in certain subclasses of problems which are complications of otherwise classical 
linear or convex optimization problems. 
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